
New Opcodes for MIDI CC Preset Banks and
MIDI Note-on Toggles for Csound in the Bela,
Csound in the Nebulae, and Csound in General

Richard Boulanger1 and John ffitch2

1 Berklee College of Music
2 Alta Sounds

rboulanger@berklee.edu jpff@codemist.co.uk

Abstract. In Csound, designing a MIDI synth that could store and
recall MIDI Continuous Controller (CC) settings on the fly (MIDI pre-
sets), or turn a specific MIDI note-on message into an on/off toggle that
would turn a Reverb, Flanger, or Distortion effect on or off are quite
basic design needs that, until now, have required some pretty ingenious,
advanced, and sometimes quite convoluted coding tricks to do the job.
Some solutions use widgets and functions in Cabbage, CsoundQt, or Blue,
but what if you not using Cabbage, CsoundQt or Blue, or what if you
are not working on an OS, or in an Application, or on an embedded
computing platform that supports them - such as the Bela, the Qu-bit
Nebulae, or Chrome, Safari, Firefox? To address this general need, a new
family of counting opcodes cntCreate, cntCycles,cntDelete, cntRead, cn-
tReset, cntState, and a new family of MIDI controller opcodes ctrlpreset,
ctrlprint, ctrlsave, ctrlselect have been added to Csound. In this paper,
a discussion of their design, and examples of their use in general Csound
and in Csound running on the Bela will be presented.

Keywords: Csound, MIDI, controller, preset, toggle

1 Introduction

Without using the widgets in Cabbage or CsoundQt, how does one save and
recall MIDI controller settings in Csound? How do you use a MIDI note-on
message, or an analog push button, to toggle an effect on and off on the Bela?
These questions always come up when a beginner is designing their first MIDI
instrument, or when they are trying to use Csound on the Bela to make a synth
or guitar pedal. If one were using Cabbage or CsoundQt, the included widgets
and functions make this an easy task; but we are not running Cabbage on the
Bela (or on the Web), and not using the CsoundQt widgets in the Csound
Web IDE. Surely, one could use ctrlinit to initialize one set of controllers, but
how can you quickly save other setting while playing and moving the knobs,
and how can one easily recall these settings? To address both of these ’preset’
and ’toggle’ problems, some inspiring ’opcode-only’ solutions do appear in The
FLOSS Manual, The Csound Catalog, and The McCurdy Collection, but these

2 Richard Boulanger and John ffitch

can be quite confusing to the beginner. Wouldn’t it be nice if there were simple
Csound opcodes that addressed these common needs in a simpler and more direct
way? In this paper, we will present the new MIDI ctrlpreset family of opcodes
and the new cnt counter family of opcodes. And we will show how they are used
to store and recall banks of MIDI controllers (presets), and how the new counters
can help to turn MIDI note-on messages and analog buttons into on/off latching
toggles on the Bela, or on any host that runs Csound.

2 An Overview of the New Counter Family of Opcodes

A counter is an internal persistent object that carries a value which can be
incremented by a given amount whenever the count opcode used. When the
internal value reaches a maximum value it is reset to a minimum value. The
internal state of range and increment can be retrieved by cntState. The counter
can be reset to the initial state and can be read via cntCycles.

This family can be used in a variety of ways. As described in the next section,
the simplest is as a toggle; but it could also count bars or particular events. 3

3 Using cntcreate to Turn MIDI Notes into Toggles

When one presses (and releases) a key on a MIDI controller keyboard to play
a note, one is actually sending two messages, a note-on message and a note-off
message. Or, if MIDI running status is supported, when you release the note,
you get another MIDI note-on message with a velocity of 0. In this case, each
note you play can send two note on messages. As soon as you release the note,
your ”note-toggle” will turn the effect off. If you intend for your ”toggle” to
turn ”on” when you play a note, and ”stay-on” until you play the note again
(to latch), then you need some way to count, keep track of the count, add and
subtract from the count, reset the count. etc. Let’s see how we do this in our
example instrument:

<CsoundSynthesizer>

<CsInstruments>

gicnt cntCreate 1 ; for ASCII toggle

gicntNote cntCreate 1 ; to ignore MIDI note-off messages

instr 1

kkey sensekey

inote notnum

if (kkey == 97) then ; the letter ’a’

k1 count gicnt

3 The current implementation doesn’t allow for a varying increment, but that could
give more flexibility to track mobile sounds for example.

New Toggle & MIDI CC Preset Opcodes 3

if k1==0 then

event "i", 2, 0, -1

else

event "d", 2, 0, -1

endif

endif

if (inote == 60) then ; the note ’c’

i2 count_i gicntNote

if i2==0 then

event_i "i", 3, 0, -1

else

event_i "d", 3, 0, -1

endif

endif

endin

instr 2

asig oscil .5, 440

outall asig

endin

instr 3

asig oscil .5, 880

outall asig

endin

</CsInstruments>

<CsScore>

i1 0 z

</CsScore>

</CsoundSynthesizer>

4 Saving and Recalling a Bank of Controller Presets

The new controller preset family of opcodes, ctrlpreset, ctrlprint, ctrlprintpresets,
ctrlsave, and ctrlselect now provide the means for users to save and load presets
to and from a file while running Csound. This will be shown in the example
below. Here, two instruments in the following orchestra work to initialize a bank
of presets, read them, and add to them. In the traditional way, the orchestra
uses instrument 0 to initialize the controllers on MIDI channel 1 and essentially
start off our FM instrument with an initial preset. Our Preset Bank includes
a bank of 12 user-created presets that respond to ASCII numbers 1 through 9
and letters a, b, and c. One can also use MIDI controller 28 to recall presets 1 -
12. These presets were originally written to the text file, my ctrlpresets.txt with

4 Richard Boulanger and John ffitch

the ctrlsave opcode and were copied here. While the instrument is running, the
ctrlprintpresets opcode displays the current preset file in the console and, most
importantly, typing a capital A will appends a new preset to the current file, in
effect, saving the current setting of all the active controllers.

<CsoundSynthesizer>

<CsInstruments>

ctrlinit 1, 21,101, 22,11, 23,12, 24,16, 25,0, 26,82 ;Starting Preset

;to select presets 1-12, type 1 -> 9, or a, b, c from "instr FM"

instr Preset_Bank

kpre1 ctrlpreset 0,1,21,101,22,94,23,01,24,06,25,14,26,02;ASCII 1

kpre2 ctrlpreset 0,1,21,102,22,57,23,76,24,55,25,77,26,12;ASCII 2

kpre3 ctrlpreset 0,1,21,103,22,12,23,13,24,16,25,84,26,22;ASCII 3

kpre4 ctrlpreset 0,1,21,104,22,83,23,18,24,13,25,24,26,32;ASCII 4

kpre5 ctrlpreset 0,1,21,105,22,20,23,48,24,33,25,94,26,42;ASCII 5

kpre6 ctrlpreset 0,1,21,106,22,52,23,10,24,03,25,68,26,52;ASCII 6

kpre7 ctrlpreset 0,1,21,107,22,09,23,02,24,07,25,01,26,02;ASCII 7

kpre8 ctrlpreset 0,1,21,108,22,34,23,10,24,96,25,44,26,42;ASCII 8

kpre9 ctrlpreset 0,1,21,109,22,04,23,91,24,66,25,04,26,92;ASCII 9

kpre10 ctrlpreset 0,1,21,110,22,04,23,10,24,66,25,44,26,22;ASCII’a’

kpre11 ctrlpreset 0,1,21,111,22,07,23,46,24,45,25,17,26,32;ASCII’b’

kpre12 ctrlpreset 0,1,21,112,22,22,23,03,24,06,25,04,26,42;ASCII’c’

ctrlprintpresets "./my_ctrlpresets.txt" ;print Presets to file

ctrlprintpresets ;print bank in console with i "Preset_Bank" 0 .1

turnoff

endin

instr FM

icps cpsmidi

iamp ampmidi 0.6

kc[] init 6

kvol midic7 21, 0,1

kcar midic7 22, 1,10

kmod midic7 23, .1,10

kndx midic7 24, 1,30

kndx port kndx,.1

iatk midic7 25, .01,1

irel midic7 26, .01,2

kpre midic7 28, 1,12 ;use CC 28 to select from preset 1-12

New Toggle & MIDI CC Preset Opcodes 5

ktrig changed2 kpre

if ktrig == 1 then

kpre = int(kpre)

ctrlselect kpre

printk2 kpre

endif

asig foscil iamp, icps, kcar, kmod, kndx, 1

kmgate linsegr 0, iatk, 1, irel, 0

outs (asig*kmgate)*kvol, (asig*kmgate)*kvol

kc ctrlsave 1,21,22,23,24,25,26;MIDI Chan&CC vals to read & save

kchar sensekey ;CC vals printed to console after playing next note

if kchar != 65 goto end0 ;ASCII char "65" is the letter ’A’ (shift-a)

ctrlprint kc ;prints Controller Settings (CC presets) to the console

ctrlprint kc, "./my_ctrlpresets.txt" ;Appends CC settings to file

end0:

if kchar<49 || kchar>57 goto end1 ;ASCII numbers 1 -> 9

kval = kchar - 48

ctrlselect kval

end1:

if kchar <97 || kchar>122 goto end2 ;ASCII lower-case letters a -> z

kval = (kchar - 97) + 10

ctrlselect kval

end2:

if kchar != 86 goto end3 ;ASCII character "86" the letter ’V’ (shift-v)

kk ctrlpreset 0,kc ;add & number current state as a preset to the list

ctrlprintpresets ;prints Controller Presets (CC presets) to console

ctrlprintpresets "./my_ctrlpresets.txt" ;appends CC presets to a file

end3:

endin

</CsInstruments>

<CsScore>

f0 3333

f1 0 8192 10 1

i "CC_Preset_Bank" 0 0.1

</CsScore>

</CsoundSynthesizer>

6 Richard Boulanger and John ffitch

5 Conclusion

The motivation for the design of these counter and controller opcodes was to
simplify the design and enhance the functionality of Csound-based systems built
for the Bela and the Qu-bit Nebulae, and they have more than met the hopes and
expectations of Csounders working on these platforms. For years now, it has been
empowering to be able to build Csound instruments that would respond to MIDI
and change in response to MIDI controllers; but, it has been tedious and difficult
to save controller presets, while tweaking them and playing the instruments
from a MIDI controller. Building instruments with the CsoundQt widgets was
one solution; but you were tied to running the instruments from a computer
running CsoundQt. Cabbage has buttons, switches, and toggle widgets, and
includes functions for saving (and naming) presets. And, it is worth noting that
one of the greatest assets of working with Csound in Cabbage is that one can
export these ”instruments” and ”effects” as Audio Units or VST plugins, and
stand-alone applications. But still, Cabbage does not run on the Bela or on
the Nebulae or on the Web. And so, this new opcode family to support the
saving, storing, numbering, and recalling of MIDI continuous controller presets
is a great addition to Csound as it brings these capabilities to the designer and
supports their exportation to any platform that runs Csound. The authors hope
that you would agree with them that it can be (and is) really great to add this
functionality to the huge collection of MIDI-based Csound instruments in the
Csound Catalog, and especially to play them, fine-tune them, and store them
as you go, and, moreover, to recall them after you are done your ’patch-design’
session.

	New Opcodes for MIDI CC Preset Banks and MIDI Note-on Toggles for Csound in the Bela, Csound in the Nebulae, and Csound in General
	Introduction
	An Overview of the New Counter Family of Opcodes
	Using cntcreate to Turn MIDI Notes into Toggles
	Saving and Recalling a Bank of Controller Presets
	Conclusion

